Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(5): 2089-2106, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678670

RESUMO

Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.

2.
Life Sci ; 219: 163-181, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641084

RESUMO

Leishmaniasis is considered a serious public health problem and the current available therapy has several disadvantages, which makes the search for new therapeutic targets and alternative treatments extremely necessary. In this context, this review focuses on the importance of parasite proteases as target drugs against Leishmania parasites, as a chemotherapy approach. Initially, we discuss about the current scenario for the treatment of leishmaniasis, highlighting the main drugs used and the problems related to their use. Subsequently, we describe the inhibitors of major proteases of Leishmania already discovered, such as Compound s9 (aziridine-2,3-dicarboxylate), Compound 1c (benzophenone derivative), Au2Phen (gold complex), AubipyC (gold complex), MDL 28170 (dipeptidyl aldehyde), K11777, Hirudin, diazo-acetyl norleucine methyl ester, Nelfinavir, Saquinavir, Nelfinavir, Saquinavir, Indinavir, Saquinavir, GNF5343 (azabenzoxazole), GNF6702 (azabenzoxazole), Benzamidine and TPCK. Next, we discuss the importance of the protease gene to parasite survival and the aspects of the validation of proteases as target drugs, with emphasis on gene disruption. Then, we describe novel important strategies that can be used to support the research of new antiparasitic drugs, such as molecular modeling and nanotechnology, whose main targets are parasitic proteases. And finally, we discuss possible perspectives to improve drug development. Based on all findings, proteases could be considered potential targets against leishmaniasis.


Assuntos
Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Tripanossomicidas/uso terapêutico , Ácido Aspártico Proteases/antagonistas & inibidores , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Hidroxietilrutosídeo , Leishmania/enzimologia , Metaloproteases/antagonistas & inibidores , Inibidores de Serino Proteinase
3.
Exp Parasitol ; 125(3): 256-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20138866

RESUMO

In this study, the cell-associated and extracellular peptidases of Trypanosoma cruzi grown in modified Roitman's complex (MRC) medium were analyzed by measuring peptidase activity in gelatin-containing zymograms. Our results showed that the cell-associated peptidases as well as peptidases extracellularly released by T. cruzi displayed two distinct proteolytic classes: cysteine and metallopeptidase activities. The major cysteine peptidase, cruzipain, synthesized by T. cruzi cells was detected in cellular parasite content, as a 50kDa reactive polypeptide, after probing with anti-cruzipain antibody. In addition, metallo-type peptidases belonging to the matrix metallopeptidase-9 (MMP-9) family were revealed, after Western blotting, as a 97kDa protein band in cellular extract and an 85kDa polypeptide in both cellular and secreted parasite extracts. The MMP-9-like activity present in cells and spent culture medium was immunoprecipitated by an anti-MMP-9 polyclonal antibody. The surface location of MMP-9-like proteins in T. cruzi was also evidenced by means of flow cytometry analysis. Furthermore, doxycycline that has direct MMP-9 inhibiting properties in vitro, inhibited MMP-9-like activities in gel zymography, immunoprecipitation and flow cytometry analyses. This is the first report of the presence of MMP-9-like molecules in T. cruzi. The presence of a matrix extracellular-degrading enzyme may play a role in the T. cruzi-host cell interaction, making this enzyme a potential target for future drug development against this pathogenic trypanosomatid.


Assuntos
Metaloproteinase 9 da Matriz/análise , Trypanosoma cruzi/enzimologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Imunoprecipitação , Metaloproteinase 9 da Matriz/química , Trypanosoma cruzi/crescimento & desenvolvimento
4.
Braz. j. microbiol ; 31(1): 25-29, jan.-mar. 2000. ilus, tab
Artigo em Inglês | LILACS | ID: lil-306361

RESUMO

Extracellular proteases from Brevundimonas diminuta (syn. Pseudomonas diminuta) were studied in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) containing a copolymerized substrate. Two proteases were detected migrating at 67kDa and 50 kDa: both of them hydrolysed preferentially gelatin, but casein was also degraded and a slight hydrolysis was observed with hemoglobin. No detectable extracellular proteolytic activity was found in bovine serum albumin-containing gels. The optima temperature and pH for proteolytic activity were between 40ºC and 50ºC in a pH ranging from 7.0 to 11.0, respectively. These enzymes were isolated by analytical high performance liquid chromatography (HPLC). Proteases assays with the synthetic substrate Z-Phe-Arg-MCA and inhibitors EGTA, EDTA and 1, 10 phenanthroline point out that these enzymes are metalloproteases.


Assuntos
Animais , Bovinos , Eletroforese em Gel de Poliacrilamida , Enzimas , Técnicas In Vitro , Metaloendopeptidases , Pseudomonadaceae , Pseudomonas , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...